CONSTITUTIVE MODEL FOR THE ANALYSIS OF THE BEHAVIOR AND MECHANICS OF WOOD DAMAGE

Roberto Quinteros-Mayne, Ignacio de Arteaga Jorda and José Manuel Cabrero

1 Universidad de Navarra, Wood Chair, Department of Building Construction, Services and Structures, 31009 Pamplona, roberto.quinteros@pucv.cl
2 Universidad de Navarra, Wood Chair, Department of Building Construction, Services and Structures, 31009 Pamplona, Spain, iarteaga@unav.es
3 Universidad de Navarra, Wood Chair, Department of Building Construction, Services and Structures, 31009 Pamplona, Spain, jcabrero@unav.es

Key Words: Constitutive Model, Mechanics of damage, macromodel, mesomodel, Finite Element Method, user subroutine.

Wood is a heterogeneous material, whose morphology and topology make the prediction of its mechanical behavior complex under different boundary conditions [1-3]. In this way, different constitutive models with different scale lengths have been developed since the middle of the 20th century to predict the behavior and mechanics of wood damage [3-8]. However, there is still no agreement on which constitutive model or scale length allows for a more consistent representation of behavior and damage mechanics mentioned.

This article seeks to contribute to the discussion a new constitutive model for the analysis of the behavior and mechanics of wood damage. To do this, we present the implementation in a user subroutine for Abaqus [9], of a viscoelastic constitutive model based on the generalized Maxwell criterion for the elastic regime with a macroscale model [10] [11]; the onset and the damage evolution law are analyzed under a mesoscale model based on the progressive degradation of cracking parallel and perpendicular to the fiber [12-14].

The financial support provided by the Spanish Ministerio de Ciencia e Innovación and Fondo Europeo de Desarrollo Regional under contract PID2020-118569GB-C21 MINECO/FEDER UE is gratefully acknowledged.

REFERENCES


