Wave redirection and confinement via elastic meta-lattices

J. M. De Ponti*, L. Iorio, R. Ardito and A. Corigliano,
Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano, Italy,
jacopomaria.deponti@polimi.it, luca.iorio@polimi.it, raffaele.ardito@polimi.it,
alberto.corigliano@polimi.it

Key Words: wave confinement, meta-lattices, resonators

Recent progress in Additive Manufacturing (AM) enables the creation of cellular architectures with unique mechanical performances [1] which can be used as effective wave diffractors, lenses, filters, or localizers [2, 3]. Inspired by the advanced wave manipulation performances of elastic substrates with resonators [4], we design elastic meta-lattices capable of generating non-reciprocal wave propagation. The proposed meta-lattice (Fig. 1) combines chiral structures together with local resonance, to induce circular wavefield for wave confinement.

The lattice is modelled using Timoshenko (shear flexible) beams in space with 6 degrees of freedom in each node. This allows to reduce the high computational cost of the simulations that would arise when using full 3D solid elements.

REFERENCES